Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1-\{5-[2-(Trifluoromethyl)phenyl]-1,3,4-thiadiazol-2-yl\}guanidinium chloride

Robert W. Janes

School of Biological Sciences, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, England
Correspondence e-mail: r.w.janes@qmw.ac.uk

Received 16 November 1999
Accepted 1 February 2000
In the title compound, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-}$, which was developed as a potential anticonvulsant, the phenyl ring, the thiadiazole ring and the guanidinium moiety are all planar. There is a dihedral angle of $48.9(1)^{\circ}$ between the thiadiazole and phenyl rings which prevents steric hindrance arising from the π bonds within the former, and the trifluorophenyl moiety attached to the latter. The thiadiazole and guanidinium moieties are twisted by 12.7 (2) ${ }^{\circ}$ with respect to each other. An extensive network of hydrogen bonds, predominantly involving the chloride ion, maintains the crystal structure.

Comment

The title compound, (I), was synthesized and supplied by Reckett and Coleman Ltd (Chapleo et al., 1986), and was made as one of a series of substituted 1,3,4-thiadiazolecontaining molecules being investigated as potential anticonvulsants (Stillings et al., 1986; Chapleo et al., 1987, 1988). A number of diverse 1,3,4-thiadiazole-containing compounds are currently being investigated by other groups for their anticonvulsant properties (Varvaresou et al., 1998; Srivastava et al., 1999; Srivastava \& Rawat, 1999), although the title compound proved to be less efficacious than related compounds studied (Chapleo et al., 1986). The title compound was also shown to possess vasodilatory properties (Turner et al., 1988).

(I)

The phenyl and thiadiazole rings are both planar (Fig. 1), with root-mean-square deviations (r.m.s.d.) for their ring atoms of 0.0193 and $0.0064 \AA$, respectively. The two rings are not coplanar, having a dihedral angle of 48.9 (1) ${ }^{\circ}$ between them, and S1 is -0.729 (6) \AA, and the two N atoms N3 and N4 are 1.127 (8) and 1.111 (6) A, respectively, from the phenyl ring plane. The angle between the rings prevents steric hindrance between the thiadiazole ring and the trifluoro-

Figure 1
The asymmetric unit of (I) at 50% probability showing the numbering scheme used in the text (SNOOPI; Davies, 1983).
methyl substituent on the phenyl ring. The guanidinium group, principally the non- H atoms $\mathrm{N} 8, \mathrm{C} 9, \mathrm{~N} 10$ and N 11 , is also highly planar, with an r.m.s.d. of $0.0009 \AA$, indicative of this being a planar carbenium ion. This group has a dihedral angle of $12.7(2)^{\circ}$ with respect to the thiadiazole ring.

As a result of the moieties attached to the phenyl group, the ring bonds display significant differences between their lengths. Notably, $\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$ at 1.399 (4) \AA is significantly longer than both $\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}[1.364$ (6) \AA A $]$ and $\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}[1.373$ (5) \AA] , and $\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$ at $1.392(5) \AA$ is also longer than $\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$. The substituents on the phenyl ring also cause significant differences in the internal angles of the ring (Table 1). The thiadiazole moiety does not display differences in the symmetric pairs of bonds ($\mathrm{S} 1-\mathrm{C} 2 / \mathrm{S} 1-\mathrm{C} 5$ and $\mathrm{C} 2-\mathrm{N} 3 / \mathrm{C} 5-\mathrm{N} 4$), despite there being two different groups attached to either side of the ring. However, with the S atom in the ring, the carbonnitrogen bonds are significantly shortened (Table 1) in comparison with those found in a comparable imidazole-like ring, being more like the mean length for such bonds as found in a furazan ring, $1.298 \AA$ (Allen et al., 1987).

The bond lengths for the N atoms and the C atom of the guanidinium moiety show significant differences between them. While the $\mathrm{C} 9-\mathrm{N} 10$ and $\mathrm{C} 9-\mathrm{N} 11$ bonds are marginally different in length (Table 1), the $\mathrm{N} 8-\mathrm{C} 9$ bond is significantly

Figure 2
The packing of the unit cell of (I) viewed along the a axis, showing the hydrogen bonding, modified from SNOOPI (Davies, 1983).
longer than $\mathrm{C} 9-\mathrm{N} 11$. This difference indicates that the stabilization of the carbenium ion centred at C9 arises mainly from the N 10 and N 11 amino groups rather than from the N 8 atom.

There are a number of hydrogen bonds that stabilize the crystal packing (Fig. 2 and Table 2). Four of the six hydrogen bonds are to the chloride ion as the acceptor. One of these four hydrogen bonds, from $\mathrm{N} 11-\mathrm{H} 111$, is bifurcated to the S atom of the thiadiazole ring. There is also an intramolecular hydrogen bond between $\mathrm{N} 11-\mathrm{H} 112$ and N 3 of the thiadiazole ring. No $\pi-\pi$ ring stacking is observed within the crystals probably as a result of the practical difficulties that would arise caused by the steric bulk of the trifluoromethyl group attached to the phenyl ring.

Experimental

Crystals were grown by slow evaporation from a $50: 50$ water/propan2 -ol mixture. The $R_{\text {int }}$ values, 0.0496 for Laue class $2 / m$ and 0.516 for mmm , clearly show that the crystal system is monoclinic.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=323.73$
Monoclinic, $P 2_{\mathrm{a}} / c$
$a=5.0864(8) \AA$
$b=7.315(3) \AA$
$c=35.812(9) \AA$
$\beta=90.00(2){ }^{\circ}$
$V=1332.4(7) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.614 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=4.9-24.9^{\circ} \\
& \mu=4.345 \mathrm{~mm}^{-1} \\
& T=296(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.2 \times 0.15 \times 0.15 \mathrm{~mm} \\
& \\
& \\
& \theta_{\max }=70.02^{\circ} \\
& h=-6 \rightarrow 6 \\
& k=-8 \rightarrow 8 \\
& l=-17 \rightarrow 43 \\
& 3 \text { standard reflections } \\
& \text { every } 200 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
4900 measured reflections
2519 independent reflections
1956 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.149$
$S=1.043$
2519 reflections
182 parameters
H atoms were constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{C} 2$	$1.715(3)$	$\mathrm{N} 4-\mathrm{C} 5$	$1.291(4)$
$\mathrm{S} 1-\mathrm{C} 5$	$1.726(3)$	$\mathrm{N} 8-\mathrm{C} 9$	$1.342(4)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.299(4)$	$\mathrm{C} 9-\mathrm{N} 11$	$1.309(4)$
$\mathrm{C} 2-\mathrm{N} 8$	$1.382(3)$	$\mathrm{C} 9-\mathrm{N} 10$	$1.326(4)$
$\mathrm{N} 3-\mathrm{N} 4$	$1.386(3)$		
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 5$	$86.7(1)$	$\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}$	$121.1(3)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{S} 1$	$114.7(2)$	$\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$	$120.4(4)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{N} 4$	$111.8(2)$	$\mathrm{C} 4^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 6^{\prime}$	$119.1(4)$
$\mathrm{C} 5-\mathrm{N} 4-\mathrm{N} 3$	$112.4(2)$	$\mathrm{C}^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{C} 5^{\prime}$	$121.5(3)$
$\mathrm{N} 4-\mathrm{C} 5-\mathrm{S} 1$	$114.3(2)$	$\mathrm{N} 11-\mathrm{C} 9-\mathrm{N} 10$	$119.8(3)$
$\mathrm{C} 6^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}$	$118.7(3)$	$\mathrm{N} 11-\mathrm{C} 9-\mathrm{N} 8$	$121.5(3)$
$\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 1^{\prime}$	$118.9(3)$	$\mathrm{N} 10-\mathrm{C} 9-\mathrm{N} 8$	$118.6(3)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 8-\mathrm{H} 8 \cdots \mathrm{Cl} 1$	0.86	2.25	$3.092(3)$	166
$\mathrm{~N} 10-\mathrm{H} 101 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.86	2.51	$3.279(3)$	150
$\mathrm{~N} 10-\mathrm{H} 102 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.86	2.53	$3.211(3)$	136
$\mathrm{~N} 11-\mathrm{H} 111 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.86	2.57	$3.327(3)$	148
$\mathrm{~N} 11-\mathrm{H} 111 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.86	2.95	$3.465(3)$	121
$\mathrm{~N} 11-\mathrm{H} 112 \cdots \mathrm{~N} 3$	0.86	2.06	$2.711(4)$	132

Symmetry codes: (i) $x, 1+y, z$; (ii) $2-x, 1-y, 1-z$.

I am indebted to R. Palmer for his support and advice throughout the work, and to the Department of Crystallography at Birkbeck College for access to their X-ray facilities.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1100). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Chapleo, C. B., Myers, M., Myers, P. L., Saville, J. F., Smith, A. C. B., Stillings, M. R., Tulloch, I. F., Walter, D. S. \& Welbourn, A. P. (1986). J. Med. Chem. 29, 2273-2280.
Chapleo, C. B., Myers, P. L., Smith, A. C. B., Stillings, M. R., Tulloch, I. F. \& Walter, D. S. (1988). J. Med. Chem. 31, 7-11.
Chapleo, C. B., Myers, P. L., Smith, A. C. B., Tulloch, I. F. \& Walters, D. S. (1987). J. Med. Chem. 30, 951-954.

Cooper, J. B. (1990). CADSHEL. Birkbeck College, University of London, England.
Davies, E. K. (1983). SNOOPI. University of Oxford, England.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Korber, F. C. F. (1982). CAD77 and CADRAL. University of Leeds, England.
Sheldrick, G. M. (1976). SHELX76. University of Cambridge, England.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Srivastava, S. D. \& Rawat, T. R. (1999). Indian J. Chem. Ser. B, 38, 623-627.
Srivastava, S. K., Srivastava, S. \& Srivastava, S. D. (1999). Indian J. Chem. Ser. B, 38, 183-187.
Stillings, M. R., Welbourn, A. P. \& Walter, D. S. (1986). J. Med. Chem. 29, 2280-2284.
Turner, S., Myers, M., Gadie, B., Hale, S. A., Horsley, A., Nelson, A. J., Pape, R., Saville, J. F., Doxey, J. C. \& Berridge, T. L. (1988). J. Med. Chem. 31, 906913.

Varvaresou, A., Siatra Papastaikoudi, T., Tsotinis, A., Tsantili Kakoulidou, A. \& Vamvakides, A. (1998). Farmaco, 53, 320-326.

